Autosoft Journal

Online Manuscript Access


Neural Identification of Thermochemical Processes for Solid Wastes Transformation


Authors



Abstract

This paper presents a neural network application to identify the behavior of the model for two thermochemical processes, which are used to transform organic solid wastes. The first model corresponds to the char reduction zone of a gasification process, including inputs signals. The second one corresponds to a fluidized bed sludge combustor focused on the dynamics of NO


Keywords


Pages

Total Pages: 19
Pages: 77-95

DOI
10.1080/10798587.2014.924688


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Volume: 21
Issue: 1
Year: 2014

Cite this document


References

How much waste do we produce? United Nations Economic Commission for Europe . Retrieved from http://www.unece.org/.

Managing municipal solid waste in Latin America and the Caribbean. The World Bank . Retrieved from http://documents.worldbank.org.

Basu, P. "Combustion of Coal in Circulating Fluidized-Bed Boilers: a Review." Chemical Engineering Science 54.22 (1999): 5547-5557. Crossref. Web. https://doi.org/10.1016/S0009-2509(99)00285-7

Kirubakaran, V. et al. "A Review on Gasification of Biomass." Renewable and Sustainable Energy Reviews 13.1 (2009): 179-186. Crossref. Web. https://doi.org/10.1016/j.rser.2007.07.001

Breault, Ronald W. "Gasification Processes Old and New: A Basic Review of the Major Technologies." Energies 3.2 (2010): 216-240. Crossref. Web. https://doi.org/10.3390/en3020216

Haykin, S. (1999). Neural networks: A comprehensive foundation. Prentice Hall, New Jersey, USA.

Discrete-time neural control: Application to induction motors

Alanis, Alma Y. et al. "Discrete-Time Output Trajectory Tracking by Recurrent High-Order Neural Network Control." Proceedings of the 45th IEEE Conference on Decision and Control (2006): n. pag. Crossref. Web. https://doi.org/10.1109/CDC.2006.377484

De Jesús Rubio, José, and Wen Yu. "Nonlinear System Identification with Recurrent Neural Networks and Dead-Zone Kalman Filter Algorithm." Neurocomputing 70.13-15 (2007): 2460-2466. Crossref. Web. https://doi.org/10.1016/j.neucom.2006.09.004

Singhal S. Advances in Neural Information Processing Systems

Werbos, P.J. "Backpropagation through Time: What It Does and How to Do It." Proceedings of the IEEE 78.10 (1990): 1550-1560. Crossref. Web. https://doi.org/10.1109/5.58337

Williams, Ronald J., and David Zipser. "A Learning Algorithm for Continually Running Fully Recurrent Neural Networks." Neural Computation 1.2 (1989): 270-280. Crossref. Web. https://doi.org/10.1162/neco.1989.1.2.270

Zhu, Shijun et al. "Prediction of Combustion Efficiency of Chicken Litter Using an Artificial Neural Network Approach." Fuel 86.5-6 (2007): 877-886. Crossref. Web. https://doi.org/10.1016/j.fuel.2006.09.029

Wang, Yiqun, and Lifeng Yan. "CFD Studies on Biomass Thermochemical Conversion." International Journal of Molecular Sciences 9.6 (2008): 1108-1130. Crossref. Web. https://doi.org/10.3390/ijms9061108

Wang, Dong Feng et al. "Combustion Optimization Based on RBF Neural Network and Multi-Objective Genetic Algorithms." 2009 Third International Conference on Genetic and Evolutionary Computing (2009): n. pag. Crossref. Web. https://doi.org/10.1109/WGEC.2009.47

Guo, Bing et al. "Simulation of Biomass Gasification with a Hybrid Neural Network Model." Bioresource Technology 76.2 (2001): 77-83. Crossref. Web. https://doi.org/10.1016/S0960-8524(00)00106-1

Romeo, Luis M., and Raquel Gareta. "Neural Network for Evaluating Boiler Behaviour." Applied Thermal Engineering 26.14-15 (2006): 1530-1536. Crossref. Web. https://doi.org/10.1016/j.applthermaleng.2005.12.006

DE, S et al. "Development of an Artificial Neural Network Model for the Steam Process of a Coal Biomass Cofired Combined Heat and Power (CHP) Plant in Sweden." Energy 32.11 (2007): 2099-2109. Crossref. Web. https://doi.org/10.1016/j.energy.2007.04.008

Liukkonen, Mika et al. "Adaptive Soft Sensor for Fluidized Bed Quality: Applications to Combustion of Biomass." Fuel Processing Technology 105 (2013): 46-51. Crossref. Web. https://doi.org/10.1016/j.fuproc.2011.06.015

Puig-Arnavat, Maria et al. "Artificial Neural Network Models for Biomass Gasification in Fluidized Bed Gasifiers." Biomass and Bioenergy 49 (2013): 279-289. Crossref. Web. https://doi.org/10.1016/j.biombioe.2012.12.012

Nougués, J.M et al. "Identification of a Pilot Scale Fluidised-Bed Coal Gasification Unit by Using Neural Networks." Applied Thermal Engineering 20.15-16 (2000): 1561-1575. Crossref. Web. https://doi.org/10.1016/S1359-4311(00)00023-5

Radhakrishnan, V.R, and A.R Mohamed. "Neural Networks for the Identification and Control of Blast Furnace Hot Metal Quality." Journal of Process Control 10.6 (2000): 509-524. Crossref. Web. https://doi.org/10.1016/S0959-1524(99)00052-9

Kalogirou, Soteris A. "Artificial Intelligence for the Modeling and Control of Combustion Processes: a Review." Progress in Energy and Combustion Science 29.6 (2003): 515-566. Crossref. Web. https://doi.org/10.1016/S0360-1285(03)00058-3

Rovithakis, George A., and Manolis A. Christodoulou. "Adaptive Control with Recurrent High-Order Neural Networks." Advances in Industrial Control (2000): n. pag. Crossref. Web. https://doi.org/10.1007/978-1-4471-0785-9

Sanchez, E. N., Alanis, A. Y. & Chen, G. (2004). Recurrent neural networks trained with Kalman filtering for discrete chaos reconstruction. In Proceeding of Asia-Pacific.

Sanchez, Edgar N., Alma Y. Alanís, and Alexander G. Loukianov. "Discrete-Time High Order Neural Control." Studies in Computational Intelligence (2008): n. pag. Crossref. Web. https://doi.org/10.1007/978-3-540-78289-6

Narendra, K.S., and K. Parthasarathy. "Identification and Control of Dynamical Systems Using Neural Networks." IEEE Transactions on Neural Networks 1.1 (1990): 4-27. Crossref. Web. https://doi.org/10.1109/72.80202

Inverse optimal adaptive recurrent neural control with constrained inputs

Entrenamiento de Redes Neuronales con el filtro de Kalman extendido

Song Y. Mathematical Systems, Estimation and Control

Wang, Y., and C.M. Kinoshita. "Kinetic Model of Biomass Gasification." Solar Energy 51.1 (1993): 19-25. Crossref. Web. https://doi.org/10.1016/0038-092X(93)90037-O

Reed, T. B. (1981). Biomass gasification principle and technology. Noyes Data Corporation, Park Ridge, New Jersey, USA.

Laidler, K. J. (1987). Chemical kinetics. Harper and Row, New York, New York, USA.

Laurendeau, Normand M. "Heterogeneous Kinetics of Coal Char Gasification and Combustion." Progress in Energy and Combustion Science 4.4 (1978): 221-270. Crossref. Web. https://doi.org/10.1016/0360-1285(78)90008-4

Li, S. et al. "Towards the Modelling and Control of NOx Emission in a Fluidized Bed Sludge Combustor." Computers & Chemical Engineering 35.7 (2011): 1281-1294. Crossref. Web. https://doi.org/10.1016/j.compchemeng.2010.07.015

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)

TWO YEAR CITATIONS PER DOCUMENT (SJR DATA): 0.993 (2018)
SJR: "The two years line is equivalent to journal impact factor ™ (Thomson Reuters) metric."





Journal: 1995-Present


CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/