Autosoft Journal

Online Manuscript Access


Effective and Efficient Ranking and Re-Ranking Feature Selector for Healthcare Analytics


Authors



Abstract

In this work, a Novel Feature selection framework called SU embedded PSO Feature Selector has been proposed (SU-PSO) towards the selection of optimal feature subset for the improvement of detection performance of classifiers. The feature space ranking is done through the Symmetrical Uncertainty method. Further, memetic operators of PSO include features and remove features are used to choose relevant features and the best of best features are selected using PSO. The proposed feature selector efficiently removes not only irrelevant but also redundant features. Performance metric such as classification accuracy, subset of features selected and running time are used for comparison.


Keywords


Pages

Total Pages: 8

DOI
10.31209/2019.100000154


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Online Article

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present




CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/