Autosoft Journal

Online Manuscript Access


Reducing Operational Time Complexity of k-NN Algorithms Using Clustering in Wrist-activity Recognition


Authors



Abstract

Recent research on activity recognition in wearable devices has identified a key challenge: k-nearest neighbors (k-NN) algorithms have a high operational time complexity. Thus, these algorithms are difficult to utilize in embedded wearable devices. Herein, we propose a method for reducing this complexity. We apply a clustering algorithm for learning data and assign labels to each cluster according to the maximum likelihood. Experimental results show that the proposed method achieves effective operational levels for implementation in embedded devices; however, the accuracy is slightly lower than that of a traditional k-NN algorithm. Additionally, our method provides the advantage of controlling the computational burden, depending on the performance of the embedded device on which the algorithm is implemented.


Keywords


Pages

Total Pages: 13

DOI
10.31209/2019.100000146


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Online Article

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present




CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/