Autosoft Journal

Online Manuscript Access

A Novel Knowledge-Based Battery Drain Reducer for Smart Meters



The issue of battery drainage in the gigantic smart meters network such as semantic-aware IoT-enabled smart meter has become a serious concern in the smart grid framework. The grid core migrates existing tabular datasets i.e., Relational data to semantic-aware tuples in its Resource Description Framework (RDF) format, for effective integration among multiple components to work aligned with IoT. For this purpose, WWW Consortium (W3C) recommends two specifications as mapping languages. However, both specifications use entire RDB schema to generate data transformation mapping patterns and results large quantity of unnecessary transformation. As a result, smart meters use huge computing resources, maximum energy capacity and come across battery drain problems. This paper proposes a novel semantic-aware battery drain optimization strategy u2018SPARQL Auto R2RML Mapping (SARM)u2019 that generates custom RDF patterns with precise metadata and avoids use of full schema along with optimized usage of network resources through (i) selective metadata migration, and (ii) optimal battery usage. The proposed approach effectively increases battery life with a balanced proportion of energy consumption and reduces meter load congestion which happens to be another vital reason of battery drain problem. The presented knowledge-based battery drain prevention strategy is evaluated over an RDB dataset using three types of SPARQL queries; Basic, Nested and Join. Furthermore, the R2RML processors evaluated SARM over the most recent Berlin SPARQL Benchmark datasets which depicts that SARM is efficient 40.4% in mapping generation time and 10.46% in average planning time than default RDB2RDF transformations. Finally, SARM significantly improves total execution time of RDB2RDF migration with an efficiency of 8.82% and conserves battery drain by 18.5% over the smart grid data cluster.



Total Pages: 13


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways

Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Online Article


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048