Autosoft Journal

Online Manuscript Access


Robust Visual Tracking Model Designs Through Kernelized Correlation Filters


Authors



Abstract

To tackle the problem of illumination sensitive, scale variation, and occlusion in the Kernelized Correlation Filters (KCF) tracker, an improved robust tracking algorithm based on KCF is proposed. Firstly, the color attribute was introduced to represent the target, and the dimension of target features was reduced adaptively to obtain low-dimensional and illumination-insensitive target features with the locally linear embedding approach. Secondly, an effective appearance model updating strategy is designed, and then the appearance model can be adaptively updated according to the Peak-to-Sidelobe Ratio value. Finally, the low-dimensional color features and the HOG features are utilized to determine the target state to further improve the robustness of the tracker. The experimental results on OTB-2015 benchmark validate that the proposed tracker can effectively solve the illumination variation, scale variation, partial occlusion and deformation in the complex background.


Keywords


Pages

Total Pages: 10

DOI
10.31209/2019.100000105


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Online Article

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present




CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/