Autosoft Journal

Online Manuscript Access


The Crime Scene Tools Identification Algorithm Based on GVF-Harris-Sift and KNN


Authors



Abstract

In order to solve the cutting tools classification problem, a crime tool identification algorithm based on GVF-Harris-SIFT and KNN is put forward. The proposed algorithm uses a gradient vector to smooth the gradient field of the image, and then uses the Harris angle detection algorithm to detect the tool angle. After that, the descriptors of the eigenvectors in corresponding feature points were using SIFT to obtained. Finally, the KNN machine learning algorithms is employed to for classification and recognition. The experimental results of the comparison of the cutting tools show the accuracy and reliability of the algorithm.


Keywords


Pages

Total Pages: 7

DOI
10.31209/2019.100000103


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Online Article

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present




CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/