Autosoft Journal

Online Manuscript Access

An Enhanced Exploitation Artificial Bee Colony Algorithm in Automatic Functional Approximations



Aiming at the drawback of artificial bee colony algorithm (ABC) with slow convergence speed and weak exploitation capacity, an enhanced exploitation artificial bee colony algorithm is proposed, EeABC for short. Firstly, a generalized opposition-based learning strategy (GOBL) is employed when initial population is produced for obtaining an evenly distributed population. Subsequently, inspired by the differential evolution (DE), two new search equations are proposed, where the one is guided by the best individuals in the next generation to strengthen exploitation and the other is to avoid premature convergence. Meanwhile, the distinction between the employed bee and the onlooker bee is not made, unified as a bee and controlled by the probability P. The performance of proposed approach was examined on 14 benchmark functions, and results are compared with basic ABC and other ABC variants. As documented in the experimental results, the proposed algorithm has good optimization performance and can improve both the accuracy and the convergence speed.



Total Pages: 10


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways

Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Online Article


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048