Autosoft Journal

Online Manuscript Access

Modified Viterbi Scoring for HMM-based Speech Recognition



A modified Viterbi scoring procedure is presented in this paper based on Dijkstrau2019s shortest- path algorithm. In HMM-based speech recognition systems, the Viterbi scoring plays a significant role in finding the best matching model, but its computational complexity is linearly proportional to the number of reference models and their states. Therefore, the complexity is serious in implementing a high-speed speech recognition system. In the proposed method, the Viterbi scoring is translated into the searching of a minimum path, and the shortest -path algorithm is exploited to decrease the computational complexity while preventing the recognition accuracy from deteriorating. In addition, a two-phase comparison structure is proposed to manage state probabilities efficiently. Simulation results show that the proposed method saves computational complexity and recognition time by more than 21% and 10% compared to the conventional Viterbi scoring and the previous early termination, respectively. The improvement of the proposed method becomes significant as the numbers of reference models, states, and Gaussian mixture models increase, which means that the proposed method is more desirable for recent speech recognition systems that deals with complex models.



Total Pages: 8


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways

Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Online Article


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048