Autosoft Journal

Online Manuscript Access


An Accelerated Convergent Particle Swarm Optimizer (ACPSO) of Multimodal Functions



Abstract

Particle swarm optimization (PSO) algorithm is a global optimization technique that is used to find the optimal solution in multimodal problems. However, one of the limitation of PSO is its slow convergence rate along with a local trapping dilemma in complex multimodal problems. To address this issue, this paper provides an alternative technique known as ACPSO algorithm, which enables to adopt a new simplified velocity update rule to enhance the performance of PSO. As a result, the efficiency of convergence speed and solution accuracy can be maximized. The experimental results show that the ACPSO outperforms most of the compared PSO variants on a diverse set of problems.


Keywords


Pages

Total Pages: 16

DOI
10.31209/2018.100000017


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Online Article

Cite this document


References

Adewumi A. O., & Arasomwan M. A. (2016). On the performance of particle swarm optimisation with (out) some control parameters for global optimisation. International Journal of Bio-Inspired Computation, 8(1), 14-32. https://doi.org/10.1504/IJBIC.2016.074632

Ali H., Shahzad W., & Khan F. A. (2012). Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization. Applied Soft Computing, 12(7), 1913-1928. https://doi.org/10.1016/j.asoc.2011.05.036

Beheshti Z., & Shamsuddin S. M. (2015). Non-parametric particle swarm optimization for global optimization. Applied Soft Computing, 28, 345-359. https://doi.org/10.1016/j.asoc.2014.12.015

Bonyadi M. R., Michalewicz Z., & Li X. (2014). An analysis of the velocity updating rule of the particle swarm optimization algorithm. Journal of Heuristics, 20(4), 417-452. https://doi.org/10.1007/s10732-014-9245-2

Bonyadi M. R., & Michalewicz Z. (2016). Particle swarm optimization for single objective continuous space problems: a review. Evolutionary Computation.

Chu X., Niu B., Liang J., & Lu Q. (2016). An orthogonal-design hybrid particle swarm optimiser with application to capacitated facility location problem. International Journal of Bio-Inspired Computation, 8(5), 268-285. https://doi.org/10.1504/IJBIC.2016.079568

Cui Z., Cai X., & Zeng J. (2009). Chaotic performance-dependent particle swarm optimization. International Journal of Innovative Computing, Information and Control, 5(4), 951-960.

Cui Z., Cai X., & Shi Z. (2012). Using fitness landscape to improve the performance of particle swarm optimization. Journal of Computational and Theoretical Nanoscience, 9(2), 258-265. https://doi.org/10.1166/jctn.2012.2020

Dorigo M., & Di Caro G. (1999). Ant colony optimization: a new meta-heuristic. Paper presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. https://doi.org/10.1109/cec.1999.782657

Eberhart R., & Kennedy J. (1995). A new optimizer using particle swarm theory. Paper presented at the 6ht Int. Symp. Micromachine Human Sci., Nagoya Japan. https://doi.org/10.1109/mhs.1995.494215

Eberhart R. C., & Shi Y. (2001). Tracking and optimizing dynamic systems with particle swarms. Paper presented at the Evolutionary Computation, 2001. Proceedings of the 2001 Congress on. https://doi.org/10.1109/CEC.2001.934376

Eberhart Y. S. a. R. C. (1998). A Modified particle swarm optimizer. Paper presented at the IEEE International Conf. on Evolutionary Computation.

Engelbrecht A. (2012). Particle swarm optimization: Velocity initialization. Paper presented at the Evolutionary Computation (CEC), 2012 IEEE Congress on. https://doi.org/10.1109/CEC.2012.6256112

Engelbrecht A. P. (2006). Fundamentals of computational swarm intelligence: John Wiley & Sons.

Engelbrecht A. P. (2013). Particle Swarm Optimization: Global Best or Local Best? Paper presented at the Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC), 2013 BRICS Congress on.

Fang H., Chen L., & Wang W. (2008). A novel PSO algorithm for global optimization of multi-dimensional function. Paper presented at the 2008 Chinese Control and Decision Conference.

Hu M., Wu T., & Weir J. D. (2013). An adaptive particle swarm optimization with multiple adaptive methods. Evolutionary Computation, IEEE Transactions on, 17(5), 705-720. https://doi.org/10.1109/TEVC.2012.2232931

James K., & Russell E. (1995). Particle swarm optimization. Paper presented at the Proceedings of 1995 IEEE International Conference on Neural Networks.

Jamil M., & Yang X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. https://doi.org/10.1504/IJMMNO.2013.055204

Kennedy M. C. a. J. (2002). The Particle Srwarm -- Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. https://doi.org/10.1109/4235.985692

Li, Xiaodong. "Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization." Lecture Notes in Computer Science (2004): 105-116. Crossref. Web. https://doi.org/10.1007/978-3-540-24854-5_10

Liang J. J., Qin A. K., Suganthan P. N., & Baskar S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. Evolutionary Computation, IEEE Transactions on, 10(3), 281-295. https://doi.org/10.1109/TEVC.2005.857610

Mendes R., Kennedy J., & Neves J. (2004). The fully informed particle swarm: simpler, maybe better. Evolutionary Computation, IEEE Transactions on, 8(3), 204-210. https://doi.org/10.1109/TEVC.2004.826074

Mirjalili S., & Lewis A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Nakisa B., Nazri M. Z., Rastgoo M. N., & Abdullah S. (2014). A survey: Particle swarm optimization based algorithms to solve premature convergence problem. Journal of Computer Science, 10(9), 1758. https://doi.org/10.3844/jcssp.2014.1758.1765

Park J.-B., Jeong Y.-W., Shin J.-R., & Lee K. Y. (2010). An improved particle swarm optimization for nonconvex economic dispatch problems. Power Systems, IEEE Transactions on, 25(1), 156-166. https://doi.org/10.1109/TPWRS.2009.2030293

Parrott D., & Li X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. Evolutionary Computation, IEEE Transactions on, 10(4), 440-458. https://doi.org/10.1109/TEVC.2005.859468

Peram T., Veeramachaneni K., & Mohan C. K. (2003). Fitness-distance-ratio based particle swarm optimization. Paper presented at the Swarm Intelligence Symposium, 2003. SIS”03. Proceedings of the 2003 IEEE. https://doi.org/10.1109/SIS.2003.1202264

Qu B.-Y., Suganthan P. N., & Das S. (2013). A distance-based locally informed particle swarm model for multimodal optimization. Evolutionary Computation, IEEE Transactions on, 17(3), 387-402. https://doi.org/10.1109/TEVC.2012.2203138

R.C. Eberhart J. K. a. (1995). Particle Swarm Optimization. Paper presented at the IEEE Intenational Conf. on Neural Networks.

Rauf A., & A. Aleisa E. (2015). PSO based Automated Test Coverage Analysis of Event Driven Systems. Intelligent Automation & Soft Computing, 21(4), 491-502. https://doi.org/10.1080/10798587.2014.966479

Sadhasivam N., & Thangaraj P. (2017). Design of an improved PSO algorithm for workflow scheduling in cloud computing environment. Intelligent Automation & Soft Computing, 23(3), 493-500. https://doi.org/10.1080/10798587.2016.1220127

Salomon R. (1996). Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39(3), 263-278. https://doi.org/10.1016/0303-2647(96)01621-8

Suganthan P. N., Hansen N., Liang J. J., Deb K., Chen Y.-P., Auger A., & Tiwari S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005.

Tian D. (2017). Particle Swarm Optimization with Chaos-based Initialization for Numerical Optimization. Intelligent Automation & Soft Computing, 1-12. https://doi.org/10.1080/10798587.2017.1293881

Van den Bergh, F., and A.P. Engelbrecht. "A New Locally Convergent Particle Swarm Optimiser." IEEE International Conference on Systems, Man and Cybernetics n. pag. Crossref. Web. https://doi.org/10.1109/ICSMC.2002.1176018

Van den Bergh F., & Engelbrecht A. P. (2010). A convergence proof for the particle swarm optimiser. Fundamenta Informaticae, 105(4), 341-374.

Wang G.-G., Deb S., & Coelho L. (2015). Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. International Journal of Bio-Inspired Computation. https://doi.org/10.1504/IJBIC.2015.10004283

Wang G.-G., Deb S., & Cui Z. (2015). Monarch butterfly optimization. Neural computing and applications, 1-20. https://doi.org/10.1007/s00521-015-1923-y

Wang G.-G. (2016). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput, 1-14.

Wang G.-G., Gandomi A. H., Alavi A. H., & Deb S. (2016). A multi-stage krill herd algorithm for global numerical optimization. International Journal on Artificial Intelligence Tools, 25(02). https://doi.org/10.1142/S021821301550030X

Wang H.-C., & Yang C.-T. (2016). Enhanced Particle Swarm Optimization With Self-Adaptation Based On Fitness-Weighted Acceleration Coefficients. Intelligent Automation & Soft Computing, 22(1), 97-110. https://doi.org/10.1080/10798587.2015.1057956

Yang X.-S., & Deb S. (2009). Cuckoo search via Lévy flights. Paper presented at the Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on.

Yang X. (2008). Firefly Algorithm (chapter 8). Nature-inspired Metaheuristic Algorithms, Luniver Press.

Zhan Z.-H., Zhang J., Li Y., & Chung H.-H. (2009). Adaptive particle swarm optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(6), 1362-1381. https://doi.org/10.1109/TSMCB.2009.2015956

Zhan Z.-H., Zhang J., Li Y., & Shi Y.-H. (2011). Orthogonal learning particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 15(6), 832-847. https://doi.org/10.1109/TEVC.2010.2052054

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present

SCImago Journal & Country Rank


CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/