Autosoft Journal

Online Manuscript Access

An Accelerated Convergent Particle Swarm Optimizer (ACPSO) of Multimodal Functions



Particle swarm optimization (PSO) algorithm is a global optimization technique that is used to find the optimal solution in multimodal problems. However, one of the limitation of PSO is its slow convergence rate along with a local trapping dilemma in complex multimodal problems. To address this issue, this paper provides an alternative technique known as ACPSO algorithm, which enables to adopt a new simplified velocity update rule to enhance the performance of PSO. As a result, the efficiency of convergence speed and solution accuracy can be maximized. The experimental results show that the ACPSO outperforms most of the compared PSO variants on a diverse set of problems.



Total Pages: 16
Pages: 91-103


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways

Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Volume: 25
Issue: 1
Year: 2019

Cite this document


Adewumi A. O., & Arasomwan M. A. (2016). On the performance of particle swarm optimisation with (out) some control parameters for global optimisation. International Journal of Bio-Inspired Computation, 8(1), 14-32.

Ali H., Shahzad W., & Khan F. A. (2012). Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization. Applied Soft Computing, 12(7), 1913-1928.

Beheshti Z., & Shamsuddin S. M. (2015). Non-parametric particle swarm optimization for global optimization. Applied Soft Computing, 28, 345-359.

Bonyadi M. R., Michalewicz Z., & Li X. (2014). An analysis of the velocity updating rule of the particle swarm optimization algorithm. Journal of Heuristics, 20(4), 417-452.

Bonyadi M. R., & Michalewicz Z. (2016). Particle swarm optimization for single objective continuous space problems: a review. Evolutionary Computation.

Chu X., Niu B., Liang J., & Lu Q. (2016). An orthogonal-design hybrid particle swarm optimiser with application to capacitated facility location problem. International Journal of Bio-Inspired Computation, 8(5), 268-285.

Cui Z., Cai X., & Zeng J. (2009). Chaotic performance-dependent particle swarm optimization. International Journal of Innovative Computing, Information and Control, 5(4), 951-960.

Cui Z., Cai X., & Shi Z. (2012). Using fitness landscape to improve the performance of particle swarm optimization. Journal of Computational and Theoretical Nanoscience, 9(2), 258-265.

Dorigo M., & Di Caro G. (1999). Ant colony optimization: a new meta-heuristic. Paper presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on.

Eberhart R., & Kennedy J. (1995). A new optimizer using particle swarm theory. Paper presented at the 6ht Int. Symp. Micromachine Human Sci., Nagoya Japan.

Eberhart R. C., & Shi Y. (2001). Tracking and optimizing dynamic systems with particle swarms. Paper presented at the Evolutionary Computation, 2001. Proceedings of the 2001 Congress on.

Eberhart Y. S. a. R. C. (1998). A Modified particle swarm optimizer. Paper presented at the IEEE International Conf. on Evolutionary Computation.

Engelbrecht A. (2012). Particle swarm optimization: Velocity initialization. Paper presented at the Evolutionary Computation (CEC), 2012 IEEE Congress on.

Engelbrecht A. P. (2006). Fundamentals of computational swarm intelligence: John Wiley & Sons.

Engelbrecht A. P. (2013). Particle Swarm Optimization: Global Best or Local Best? Paper presented at the Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC), 2013 BRICS Congress on.

Fang H., Chen L., & Wang W. (2008). A novel PSO algorithm for global optimization of multi-dimensional function. Paper presented at the 2008 Chinese Control and Decision Conference.

Hu M., Wu T., & Weir J. D. (2013). An adaptive particle swarm optimization with multiple adaptive methods. Evolutionary Computation, IEEE Transactions on, 17(5), 705-720.

James K., & Russell E. (1995). Particle swarm optimization. Paper presented at the Proceedings of 1995 IEEE International Conference on Neural Networks.

Jamil M., & Yang X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194.

Kennedy M. C. a. J. (2002). The Particle Srwarm -- Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73.

Li, Xiaodong. "Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization." Lecture Notes in Computer Science (2004): 105-116. Crossref. Web.

Liang J. J., Qin A. K., Suganthan P. N., & Baskar S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. Evolutionary Computation, IEEE Transactions on, 10(3), 281-295.

Mendes R., Kennedy J., & Neves J. (2004). The fully informed particle swarm: simpler, maybe better. Evolutionary Computation, IEEE Transactions on, 8(3), 204-210.

Mirjalili S., & Lewis A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67.

Nakisa B., Nazri M. Z., Rastgoo M. N., & Abdullah S. (2014). A survey: Particle swarm optimization based algorithms to solve premature convergence problem. Journal of Computer Science, 10(9), 1758.

Park J.-B., Jeong Y.-W., Shin J.-R., & Lee K. Y. (2010). An improved particle swarm optimization for nonconvex economic dispatch problems. Power Systems, IEEE Transactions on, 25(1), 156-166.

Parrott D., & Li X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. Evolutionary Computation, IEEE Transactions on, 10(4), 440-458.

Peram T., Veeramachaneni K., & Mohan C. K. (2003). Fitness-distance-ratio based particle swarm optimization. Paper presented at the Swarm Intelligence Symposium, 2003. SIS”03. Proceedings of the 2003 IEEE.

Qu B.-Y., Suganthan P. N., & Das S. (2013). A distance-based locally informed particle swarm model for multimodal optimization. Evolutionary Computation, IEEE Transactions on, 17(3), 387-402.

R.C. Eberhart J. K. a. (1995). Particle Swarm Optimization. Paper presented at the IEEE Intenational Conf. on Neural Networks.

Rauf A., & A. Aleisa E. (2015). PSO based Automated Test Coverage Analysis of Event Driven Systems. Intelligent Automation & Soft Computing, 21(4), 491-502.

Sadhasivam N., & Thangaraj P. (2017). Design of an improved PSO algorithm for workflow scheduling in cloud computing environment. Intelligent Automation & Soft Computing, 23(3), 493-500.

Salomon R. (1996). Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. BioSystems, 39(3), 263-278.

Suganthan P. N., Hansen N., Liang J. J., Deb K., Chen Y.-P., Auger A., & Tiwari S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005.

Tian D. (2017). Particle Swarm Optimization with Chaos-based Initialization for Numerical Optimization. Intelligent Automation & Soft Computing, 1-12.

Van den Bergh, F., and A.P. Engelbrecht. "A New Locally Convergent Particle Swarm Optimiser." IEEE International Conference on Systems, Man and Cybernetics n. pag. Crossref. Web.

Van den Bergh F., & Engelbrecht A. P. (2010). A convergence proof for the particle swarm optimiser. Fundamenta Informaticae, 105(4), 341-374.

Wang G.-G., Deb S., & Coelho L. (2015). Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. International Journal of Bio-Inspired Computation.

Wang G.-G., Deb S., & Cui Z. (2015). Monarch butterfly optimization. Neural computing and applications, 1-20.

Wang G.-G. (2016). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput, 1-14.

Wang G.-G., Gandomi A. H., Alavi A. H., & Deb S. (2016). A multi-stage krill herd algorithm for global numerical optimization. International Journal on Artificial Intelligence Tools, 25(02).

Wang H.-C., & Yang C.-T. (2016). Enhanced Particle Swarm Optimization With Self-Adaptation Based On Fitness-Weighted Acceleration Coefficients. Intelligent Automation & Soft Computing, 22(1), 97-110.

Yang X.-S., & Deb S. (2009). Cuckoo search via Lévy flights. Paper presented at the Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on.

Yang X. (2008). Firefly Algorithm (chapter 8). Nature-inspired Metaheuristic Algorithms, Luniver Press.

Zhan Z.-H., Zhang J., Li Y., & Chung H.-H. (2009). Adaptive particle swarm optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(6), 1362-1381.

Zhan Z.-H., Zhang J., Li Y., & Shi Y.-H. (2011). Orthogonal learning particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 15(6), 832-847.


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048