Autosoft Journal

Online Manuscript Access

A Distributed Heterogeneous Inspection System for High Performance In-line Surface Defect Detection



This paper presents the Distributed Heterogeneous Inspection System (DHIS), which comprises two CUDA workstations and is equipped with CPU distributed computing, CPU concurrent computing, and GPU concurrent computing functions. Thirty-two grayscale images, each with 5,000✕712,288 pixels and simulated defect patterns, were created to evaluate the performances of three system configurations: (1) DHIS; (2) two CUDA workstations with CPU distributed computing and GPU concurrent computing; (3) one CUDA workstation with GPU concurrent computing. Experimental results indicated that: (1) only DHIS can satisfy the time limit, and the average turnaround time of DHIS is 37.65% of the time limit; (2) a good linear relationship exists between the processing speed ratio and the instruction sequence quantity ratio.



Total Pages: 12
Pages: 79-90


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways

Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Volume: 25
Issue: 1
Year: 2019

Cite this document


L. Busin, N. Vandenbroucke, and L. Macaire, (2013). Contribution of a color space selection to a flaw detection vision system. Journal of Electronic Imaging, 22(3), 17.

D. R. Butenhof, (1997). Programming with POSIX Threads (1 ed.): Addison-Wesley Professional.

D. Buttlar, J. Farrell, and B. Nichols, (1996). PThreads Programming: A POSIX Standard for Better Multiprocessing (1 ed.): O”Reilly Media.

M. Chang, Y.-C. Chou, P. T. Lin, and J. L. Gabayno, (2014). Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects. CMC: Computers, Materials & Continua, 42(2), 125-140.

Y. C. Chiou, J. Z. Liu, and Y. T. Liang, (2011). Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques. Sensor Review, 31(2), 154-165.

S. Cook, (2012). CUDA Programming: A Developer”s Guide to Parallel Computing with GPUs (1 ed.): Morgan Kaufmann.

W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, (2014). Using Advanced MPI: Modern Features of the Message-Passing Interface (1 ed.). Cambridge, MA, USA: MIT Press.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, (1996). A high-performance, portable implementation of the MPI message passing interface standard. Parallel computing, 22(6), 789-828.

W. Gropp, E. Lusk, and A. Skjellum, (2014). Using MPI: Portable Parallel Programming with the Message-Passing Interface (3 ed.). Cambridge, MA, USA: MIT Press.

W. B. Li, C. H. Lu, and J. C. Zhang, (2012). A local annular contrast based real-time inspection algorithm for steel bar surface defects. Applied Surface Science, 258(16), 6080-6086.

W. C. Li and D. M. Tsai, (2011). Automatic saw-mark detection in multicrystalline solar wafer images. Solar Energy Materials and Solar Cells, 95(8), 2206-2220.

C.-S. Lin, C.-W. Lin, S.-W. Yang, S.-K. Lin, and C.-C. Chiu, (2013). The Chemical Stain Inspection of Polysilicon Solar Cell Wafer by the Fuzzy Theory Method. Intelligent Automation & Soft Computing, 19(3), 391-406.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, (2008). NVIDIA Tesla: A unified graphics and computing architecture. IEEE micro, 28(2), 39-55.

Message Passing Interface Forum. (2015). MPI: A Message-Passing Interface Standard, Version 3.1. Knoxville,Tennessee, USA.

W. Michaeli and K. Berdel, (2011). Inline inspection of textured plastics surfaces. Optical Engineering, 50(2), 6.

NVIDIA. (2014). CUDA C Programming Guide. Retrieved from

J. Park and Z. Bien, (1995). Design of an Advanced Machine Vision System for Industrial Inspection. Intelligent Automation & Soft Computing, 1(2), 209-219.

G. Rosati, G. Boschetti, A. Biondi, and A. Rossi, (2009). Real-time defect detection on highly reflective curved surfaces. Optics and Lasers in Engineering, 47(3-4), 379-384.

S. G. Ryu, D. C. Choi, Y. J. Jeon, S. J. Lee, J. P. Yun, and S. W. Kim, (2014). Detection of Scarfing Faults on the Edges of Slabs. ISJI International, 54(1), 112-118.

Y. Tian, C. Zhao, S. Lu, and X. Guo, (2011). Multiple Classifier Combination for Recognition of Wheat Leaf Diseases. Intelligent Automation & Soft Computing, 17(5), 519-529.

D. M. Tsai, C. C. Chang, and S. M. Chao, (2010). Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion. Image and Vision Computing, 28(3), 491-501.

D. M. Tsai, M. C. Chen, W. C. Li, and W. Y. Chiu, (2012). A fast regularity measure for surface defect detection. Machine Vision and Applications, 23(5), 869-886.

D. M. Tsai, I. Y. Chiang, and Y. H. Tsai, (2012). A Shift-Tolerant Dissimilarity Measure for Surface Defect Detection. Ieee Transactions on Industrial Informatics, 8(1), 128-137.

D. M. Tsai, and H. Y. Tsai, (2011). Low-contrast surface inspection of mura defects in liquid crystal displays using optical flow-based motion analysis. Machine Vision and Applications, 22(4), 629-649.

Y. H. Tsai, D. M. Tsai, W. C. Li, W. Y. Chiu, and M. C. Lin, (2011). Surface defect detection of 3D objects using robot vision. Industrial Robot-an International Journal, 38(4), 381-398.

S. E. Umbaugh, (2016). Digital image processing and analysis: human and computer vision applications with CVIPtools: CRC press.

X. W. Zhang, Y. Q. Ding, Y. Y. Lv, A. Y. Shi, and R. Y. Liang, (2011). A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM. Expert Systems with Applications, 38(5), 5930-5939.


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048