Autosoft Journal

Online Manuscript Access


Adaptive Hybrid Control Scheme for Controlling the Position of Coaxial Tri-rotor UAS


Authors



Abstract

In this article, adaptive hybrid control scheme is proposed for controlling the position of a coaxial tri-rotor unmanned aerial system (UAS) in the presence of input saturation and external wind disturbance. The adaptive hybrid controller consists of model reference adaptive control with integral feedback (MRACI) and proportional integral derivative (PID) controller. The adaptive controller deals with the flight dynamics uncertainties and PID controller is used for tuning the gains of MRACI whereas the stability of system is verified by Lyapunov stability criterion. The integrator improves the order of the system thereby improving the convergence rate by rejecting the noise and eliminating steady state errors. Moreover, anti-windup Compensator (AWC) is used to handle the saturation problem. The designed algorithm is applied to a six degree of freedom (6-DOF) nonlinear model of coaxial tri-rotor UAS. Simulations are carried out to validate the reference path of UAS and are compared with MRAC. In this article the wind disturbance test is also performed to check the robustness of the designed controller. It is observed that the proposed algorithm exhibits, quick error convergence, zero steady state error and robustness in the presence of input saturation and external wind disturbance.


Keywords


Pages

Total Pages: 11

DOI
10.31209/2018.100000009


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways


Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Published

Online Article

Cite this document


References

Z. A. Ali, D. B. Wang, and M. S. Loya. (2017). SURF and LA with RGB Vector Space Based Detection and Monitoring of Manholes with an Application to Tri-Rotor UAS Images. International Journal of Engineering and Technology, 9(1), 32.

Z. A. Ali, D. Wang, and M. Aamir. (2016b). Fuzzy-Based hybrid control algorithm for the stabilization of a tri-rotor UAV. Sensors, 16(5), 652. https://doi.org/10.3390/s16050652

Z. A. Ali, D. Wang, S. Masroor, and M. S. Loya. (2016a). Attitude and Altitude Control of Trirotor UAV by Using Adaptive Hybrid Controller. Journal of Control Science and Engineering, 2016. https://doi.org/10.1155/2016/6459891

O. Castillo and L. Cervantes. (2014). Genetic design of optimal type-1 and type-2 fuzzy systems for longitudinal control of an airplane. Intelligent Automation and Soft Computing, 20(2), 213-227. https://doi.org/10.1080/10798587.2014.902913

C.-S. Chen and W.-L. Chen. Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system. IEEE Transactions on Industrial Electronics 45, no. 2 (1998): 297-306. https://doi.org/10.1109/41.681229

F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao. (2016). Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Transactions on Industrial Electronics, 63(8), 5044-5056. https://doi.org/10.1109/tie.2016.2552151

A. Das, F. Lewis, and K. Subbarao. (2009). Backstepping approach for controlling a quadrotor using lagrange form dynamics. Journal of Intelligent and Robotic Systems, 56(1-2), 127-151. https://doi.org/10.1007/s10846-009-9331-0

L. Eugene and W. Kevin. (2013). Robust and adaptive control with aerospace applications.

M. A. A. Farooqi, F. M. Malik, J. Anwar, and M. Ali. (2016). Sampled Data Output Feedback Control of Tri Rotor Unmanned Aerial Vehicle. Science International, 28(1).

P. Gasior, A. Bondyra, S. Gardecki, W. Giernacki, and A. Kasiński. (2016). Thrust estimation by fuzzy modeling of coaxial propulsion unit for multirotor UAVs. In Multisensor Fusion and Integration for Intelligent Systems (MFI), 2016 IEEE International Conference on (pp. 418-423). IEEE. https://doi.org/10.1109/mfi.2016.7849524

A. Ghodbane, M. Saad, C. Hobeika, J. F. Boland, and C. Thibeault. (2016). Design of a tolerant flight control system in response to multiple actuator control signal faults induced by cosmic rays. IEEE Transactions on Aerospace and Electronic Systems, 52(2), 681-697. https://doi.org/10.1109/TAES.2015.140787

L. Hsu, R. R. Costa, and F. Lizarralde. (2007). Lyapunov/passivity-based adaptive control of relative degree two MIMO systems with an application to visual servoing. IEEE Transactions on Automatic Control, 52(2), 364-371. https://doi.org/10.1109/TAC.2006.890381

J. Hu, Y. Qiu, and L. Liu. (2016). High-order sliding-mode observer based output feedback adaptive robust control of a launching platform with backstepping. International Journal of Control, 89(10), 2029-2039. https://doi.org/10.1080/00207179.2016.1147604

N. E. Kahveci, (2009). Adaptive Control Design for Uncertain and Constrained Vehicle Yaw Dynamics. In Frontiers in Adaptive Control. InTech.

D. Lara, M. Panduro, G. Romero, E. Alcorta, and R. Betancourt. (2014). Robust control design techniques using differential evolution algorithms applied to the pvtol. Intelligent Automation and Soft Computing, 20(3), 451-466. https://doi.org/10.1080/10798587.2014.907966

L. Mederreg, F. Diaz, and N. K. M”sirdi. (2003). Nonlinear backstepping control with observer design for a 4 rotors helicopter. AVCS, 4, 28-31.

R. R. Murphy, S. Tadokoro, and A. Kleiner. (2016). Disaster Robotics. In Springer Handbook of Robotics (pp. 1577-1604). Springer International Publishing. https://doi.org/10.1007/978-3-319-32552-1_60

A. Ortiz, F. Bonnin-Pascual, and E. Garcia-Fidalgo. (2014). Vessel inspection: A micro-aerial vehicle-based approach. Journal of Intelligent and Robotic Systems, 76(1), 151-167. https://doi.org/10.1007/s10846-013-9852-4

C. M. Pappalardo and D. Guida. (2017). Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. Journal of Dynamic Systems, Measurement, and Control, 139(8), 081010. https://doi.org/10.1115/1.4035609

W. F. Phillips, C. E. Hailey, and G. A. Gebert. (2001). Review of attitude representations used for aircraft kinematics. Journal of aircraft, 38(4), 718-737. https://doi.org/10.2514/2.2824

D. Portugal, G. Cabrita, D. B. Gouveia, D. C. Santos, and J. A. Prado. (2015). An autonomous all terrain robotic system for field demining missions. Robotics and Autonomous Systems, 70(C), 126-144. https://doi.org/10.1016/j.robot.2015.02.013

P. E. Pounds, D. R. Bersak, and A. M. Dollar. (2012). Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Autonomous Robots, 33(1-2), 129-142. https://doi.org/10.1007/s10514-012-9280-5

P. Sarhadi, A. R. Noei, and A. Khosravi. (2016). Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robotics and Autonomous Systems, 83, 87-93. https://doi.org/10.1016/j.robot.2016.05.016

X. Shao and H. Wang. (2015). Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties. ISA transactions, 54, 27-38. https://doi.org/10.1016/j.isatra.2014.06.010

T. Shima, M. Idan, and O. M. Golan. (2006). Sliding-mode control for integrated missile autopilot guidance. Journal of guidance, control, and dynamics, 29(2), 250-260. https://doi.org/10.2514/1.14951

B. L. Stevens, F. L. Lewis, and E. N. Johnson. (2015). Aircraft control and simulation: dynamics, controls design, and autonomous systems. John Wiley and Sons. https://doi.org/10.1002/9781119174882

M. C. Turner and R. T. O”Brien. (2015). An anti-windup scheme for an adaptive vibration controller: Development and simulations. In American Control Conference (ACC), 2015(pp. 5306-5311). IEEE. https://doi.org/10.1109/ACC.2015.7172168

S. Ulrich, J. Z. Sasiadek and I. Barkana. (2012). Modeling and direct adaptive control of a flexible-joint manipulator. Journal of Guidance, Control and Dynamics, 35(1), 25-39. https://doi.org/10.2514/1.54083

T. K. Venugopalan, T. Taher, and G. Barbastathis. (2012). Autonomous landing of an Unmanned Aerial Vehicle on an autonomous marine vehicle. In Oceans, 2012 (pp. 1-9). IEEE. https://doi.org/10.1109/oceans.2012.6404893

D. B. Wang, Z. A. Ali, and M. Aamir. (2016). Hybrid Strategy for Nonlinear Control of (6 DOF) Under Actuated Tricolor UAV. International Journal of Control and Automation, 9(12), 463-472. https://doi.org/10.14257/ijca.2016.9.12.38

D. W. Yoo, H. D. Oh, D. Y. Won, and M. J. Tahk. (2010, June). Dynamic modeling and control system design for Tri-Rotor UAV. In Systems and Control in Aeronautics and Astronautics (ISSCAA), 2010 3rd International Symposium on (pp. 762-767). IEEE. A. Znidi, K. Dehri, and A. S. Nouri. (2016). Discrete variable structure model reference adaptive control using only input-output measurements. Transactions of the Institute of Measurement and Control, 0142331216668392.

J. Yue, T. Lei, C. Li, and J. Zhu. (2012). The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intelligent Automation and Soft Computing, 18(8), 1043-1052. https://doi.org/10.1080/10798587.2008.10643309

JOURNAL INFORMATION


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present




CONTACT INFORMATION


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048
EMAIL: tsiepress@gmail.com
WEB: http://www.wacong.org/tsi/