Autosoft Journal

Online Manuscript Access

Robot Pose Estimation Based on Visual Information and Particle Swarm Optimization



This paper presents a method for 3D pose estimation using visual information and a soft-computing algorithm. The algorithm uses quaternions to represent rotations, and Particle Swarm Optimization to estimate such quaternion. The rotation estimation problem is cast as a minimization problem, which finds the best quaternion for the given data using the PSO algorithm. With this technique, the algorithm always returns a valid quaternion, and therefore a valid rotation. During the estimation process, the algorithm is able to detect and reject outliers. The simulations and experimental results show the robustness of algorithm against noise and outliers.



Total Pages: 12
Pages: 431-442


Manuscript ViewPdf Subscription required to access this document

Obtain access this manuscript in one of the following ways

Already subscribed?

Need information on obtaining a subscription? Personal and institutional subscriptions are available.

Already an author? Have access via email address?


Volume: 24
Issue: 2
Year: 2018

Cite this document


A.Y. Alanis, E. Rangel, J. Rivera, N. Arana-Daniel, and C. Lopez-Franco. (2013). Particle swarm based approach of a real-time discrete neural identifier for linear induction motors. Mathematical problems in engineering, 2013.

K.S. Arun, T. S. Huang, and S.D Blostein. (1987). Least-squares fitting of two 3-d point sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (5), pp. 698–700.

A.A. Bakar, A. R. Hamdan, and M.Z.A. Nazri. (2010, November). A Rough set outlier detection based on Particle Swarm Optimization. In Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on (pp. 1021-1025). IEEE.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. (2008). Speeded-up robust features (surf). Computer vision and image understanding, 110(3):346–359.

H. Bay, T. Tuytelaars, and L. Van Gool. (2006). Surf: Speeded up robust features. In Computer Vision–ECCV 2006, (pp. 404–417). Springer Berlin Heidelberg.

W. N. Chen, J. Zhang, Y. Lin, N. Chen, Z.H. Zhan, H. H. Chung, ... and Y. H. Shi. (2013). Particle swarm optimization with an aging leader and challengers. Evolutionary Computation, IEEE Transactions on, 17(2), 241-258.

Choi, Young, Young Suh, and Sang Park. "Pose Estimation from Landmark-Based Vision and Inertial Sensors." 2006 SICE-ICASE International Joint Conference (2006): n. pag. Crossref. Web.

M. Dorigo, V. Maniezzo, and A. Colorni. (1996). Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1), 29-41.

Eiben, A. E., & Smith, J. E. (2008). Introduction to evolutionary computing (natural computing series).

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based optimization algorithms. Advanced engineering informatics,19(1), 43-53.

Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3), 210-225.

Gedik, O. S., & Alatan, A. A. (2013, July). Fusing 2D and 3D clues for 3D tracking using visual and range data. In Information Fusion (FUSION), 2013 16th International Conference on (pp. 1966-1973). IEEE.

Geng, H. and Hu, Q. (2013). Feature-matching and extended kalman filter for stereo ego-motion estimation." In Image and Vision Computing New Zealand (IVCNZ), 2013 28th International Conference of, pp. 242–246.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning,3(2), 95-99.

Hernandez-Vargas, E.A., Lopez-Franco, C., Rangel, E., Arana-Daniel, N., Alanis, A.Y. (2014). Particle swarm optimization with bio-inspired aging model. Submitted to IEEE Trans. Evolutionary Computation.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.

Hu, G., Dixon, W. E., Gupta, S., & Fitz-Coy, N. (2006, May). A quaternion formulation for homography-based visual servo control. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2391-2396). IEEE.

Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine vision (Vol. 5). New York: McGraw-Hill.

Jia, Y.-B. (2008). Quaternions and rotations. Handout of the Problem Solving Techniques for Applied Computer Science Lecture at Iowa State University, 52.

Jin, M., & Wu, D. (2013). Collision-free and energy-saving trajectory planning for large-scale redundant manipulator using improved pso. Mathematical Problems in Engineering, 2013.

Junmin, Li et al. "Robot Pose Estimation and Accuracy Analysis Based on Stereo Vision." 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks (2013): n. pag. Crossref. Web.

Kaempchen, N., Franke, U., & Ott, R. (2002, June). Stereo vision based pose estimation of parking lots using 3D vehicle models. In Intelligent Vehicle Symposium, 2002. IEEE (Vol. 2, pp. 459-464). IEEE.

Kenndy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks (Vol. 4, pp. 1942-1948).

López-Franco, C., Villavicencio, L., Arana-Daniel, N., & Alanis, A. Y. (2014). Image classification using PSO-SVM and an RGB-D sensor. Mathematical Problems in Engineering, 2014.

Ma, Y. (Ed.). (2004). An invitation to 3-d vision: from images to geometric models (Vol. 26). Springer Science & Business Media.

Minoux, M. (1986). Mathematical programming: theory and algorithms. John Wiley & Sons.

Salamin, E. (1979). Application of quaternions to computation with rotations. Working Paper.

Shi, Y. (2004). Particle swarm optimization. IEEE Connections, 2(1), 8-13.

Steder, B., Grisetti, G., Grzonka, S., Stachniss, C., Rottmann, A., & Burgard, W. (2007, October). Learning maps in 3d using attitude and noisy vision sensors. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on (pp. 644-649). IEEE.

Tewolde, Girma S. "Evolutionary Learning for Improving Performance of Robot Navigation." IEEE International Conference on Electro-Information Technology, EIT 2013 (2013): n. pag. Crossref. Web.

Tong, G., Liu, R., & Li, H. (2012, May). The monocular model-based 3D pose tracking. In Control and Decision Conference (CCDC), 2012 24th Chinese (pp. 980-985). IEEE.

Torr, P. H., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138-156.

Welch, G., & Foxlin, E. (2002). Motion tracking survey. IEEE Computer graphics and Applications, 24-38.

Yang, M., Dong, B., Wang, H., & Zhang, B. (2002, June). Laser radar based real-time ego-motion estimation for intelligent vehicles. In Intelligent Vehicle Symposium, 2002. IEEE (Vol. 1, pp. 44-51). IEEE.


ISSN PRINT: 1079-8587
ISSN ONLINE: 2326-005X
DOI PREFIX: 10.31209
10.1080/10798587 with T&F
IMPACT FACTOR: 0.652 (2017/2018)
Journal: 1995-Present


TSI Press
18015 Bullis Hill
San Antonio, TX 78258 USA
PH: 210 479 1022
FAX: 210 479 1048